Quantum Algorithm for Simulating Single-Molecule Electron Transport

نویسندگان

چکیده

An accurate description of electron transport at a molecular level requires precise treatment quantum effects. These effects play crucial role in determining the properties single molecules, which can be challenging to simulate classically. Here we introduce algorithm efficiently calculate electronic current through single-molecule junctions weak-coupling regime. We show that computer programmed vibronic transitions between different charge states molecule used compute electron-transfer rates and current. In harmonic approximation, implemented using Gaussian boson sampling devices, are near-term platform for photonic computing. apply conductance magnesium porphine molecule. The provides means better understanding mechanism level, paves way building practical devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling quantum transport through a single molecule.

We investigate multiterminal quantum transport through single monocyclic aromatic annulene molecules, and their derivatives, using the nonequilibrium Green function approach within the self-consistent Hartree-Fock approximation. We propose a new device concept, the quantum interference effect transistor, that exploits perfect destructive interference stemming from molecular symmetry and control...

متن کامل

Single electron transport in quantum dots

We review our experimental study on the electron transport in quantum dots, formed in the two-dimensional electron gas in GaAs/AlGaAs heterostructures. Single electron transport with well-resolved zero-dimensional energy levels is described for both single and coupled quantum dots. Effects of microwave irradiation are also studied, and photon assisted tunneling was observed between two discrete...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Quantum Theory of Electron Transport through Single-level Quantum Dot

Abstract. A new approach in the quantum theory of few-electron nanoelectronic devices – the S-matrix approach – is presented in a simple example: a single-electron transistor consisting of a single-level quantum dot connected with two metallic leads through the corresponding potential barriers. The electron transport through the quantum dot due to the electron tunneling between the dot and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physical Chemistry Letters

سال: 2021

ISSN: ['1948-7185']

DOI: https://doi.org/10.1021/acs.jpclett.0c03724